Search results for "In situ forming"

showing 4 items of 4 documents

In vitro evaluation of poloxamer in situ forming gels for bedaquiline fumarate salt and pharmacokinetics following intramuscular injection in rats

2019

Graphical abstract

In situPO Propylene oxideIV IntravenousP338 Poloxamer 338lcsh:RS1-441Pharmaceutical Sciencechemistry.chemical_compoundn Sample sizeSD Standard deviationIM Intramuscularchemistry.chemical_classificationC0 Analyte plasma concentration at time zeroDoE Design of experimentsUV UltravioletPharmacology. TherapyK2.EDTA Potassium ethylenediaminetetraacetic acidLC–MS/MS Liquid chromatography-tandem mass spectrometryH&E Hematoxylin and eosintmax Sampling time to reach the maximum observed analyte plasma concentrationIn situ forming gelsCMC Critical micellar concentrationCmax Maximum observed analyte plasma concentrationIntramuscular injectionDN Dose normalizedGPT Gel point temperaturePLGA Poly-(DL-lactic-co-glycolic acid)TFA Trifluoroacetic acidCAN AcetonitrileATP Adenosine 5′ triphosphateSalt (chemistry)Polyethylene glycolPoloxamerArticlelcsh:Pharmacy and materia medicaPharmacokineticsIn vivoUHPLC Ultra-high performance liquid chromatographyPharmacokineticsAUClast Area under the analyte concentration versus time curve from time zero to the time of the last measurable (non-below quantification level) concentrationEO Ethylene oxideNMP N-methyl-2-pyrrolidoneComputingMethodologies_COMPUTERGRAPHICSAUC∞ Area under the analyte concentration vs time curve from time zero to infinite timeP407 Poloxamer 407In vitro releasePoloxamerCMT Critical micellar temperatureGel erosionIn vitrot1/2 Apparent terminal elimination half-lifechemistryMDR-TB Multi-drug resistant tuberculosisAUC80h Area under the analyte concentration versus time curve from time zero to 80 htlast Sampling time until the last measurable (non-below quantification level) analyte plasma concentrationMRM Multiple reaction monitoringNuclear chemistrySustained releaseInternational Journal of Pharmaceutics: X
researchProduct

In situ forming hydrogels of new amino hyaluronic acid/benzoyl-cysteine derivatives as potential scaffolds for cartilage regeneration

2012

A new chemical strategy is described to link ethylenediamino (EDA) groups to primary hydroxyl groups of hyaluronic acid (HA) and the obtained derivatives have been characterized by 1H-NMR and 13C-NMR analyses. Such HA–EDA derivatives have been exploited to control the functionalization degree in benzoyl-cysteine (BC) groups, chosen as moieties able to allow both self-assembling in aqueous media and an oxidative crosslinking. In particular, the kinetics of oxidation of thiol groups in HA–EDA–BC derivatives has been studied in Dulbecco's Phosphate Buffer Solution (DPBS) pH 7.4 by colorimetric assays and rheological measurements. Mechanical properties of chemical hydrogels obtained after oxida…

chemistry.chemical_classificationKineticsGeneral ChemistryCondensed Matter PhysicsExtracellular matrixchemistry.chemical_compoundchemistryIn situ forming hydrogels hyaluronic acid scaffolds cartilage regeneration tissue engineeringSettore CHIM/09 - Farmaceutico Tecnologico ApplicativoEnzymatic hydrolysisHyaluronic acidSelf-healing hydrogelsThiolOrganic chemistrySurface modificationNuclear chemistryCysteine
researchProduct

A hyaluronic acid/cyclodextrin based injectable hydrogel for local doxorubicin delivery to solid tumors

2020

Localized delivery of anticancer drugs is often the most useful therapeutic approach for the treatment of solid tumors. The use of injectable polymeric systems that maximize drug concentration in the proximal area of the tumor represents an extremely advantageous therapeutic strategy. Here, the development of an injectable in situ forming hydrogel was accomplished by exploiting the azo-type Michael reaction between an amine derivative of hyaluronic and vinylsulfone functionalized -cyclodextrins complexing doxorubicin. This injectable system can be easily prepared and administered with timelines compatible with normal operating room procedures, as demonstrated by rheological tests. In vitro…

medicine.medical_treatmentPharmaceutical Science02 engineering and technology030226 pharmacology & pharmacy03 medical and health scienceschemistry.chemical_compoundDrug Delivery Systems0302 clinical medicineAnimal modelIn vivoNeoplasmsHyaluronic acidmedicineAnimalsDoxorubicinHyaluronic Acidchemistry.chemical_classificationCyclodextrinsChemotherapyCyclodextrinChemistryHydrogels021001 nanoscience & nanotechnologyIn vitroDrug concentrationDoxorubicinLocalized chemotherapy hyaluronic acid cyclodextrins in situ forming hydrogel DoxorubicinSettore CHIM/09 - Farmaceutico Tecnologico Applicativo0210 nano-technologyBiomedical engineeringmedicine.drug
researchProduct

In Vitro Evaluation of Poly(lactide-co-glycolide) In Situ Forming Gels for Bedaquiline Fumarate Salt and Pharmacokinetics Following Subcutaneous Inje…

2021

This study evaluated in vitro and in vivo drug release of bedaquiline from in situ forming gels (ISGs) containing 200 mg eq./g bedaquiline fumarate salt prepared with four different grades of poly(d,l-lactide) (PDLLA) or poly(d,l-lactide-co-glycolide) (PLGA) with a lactide/glycolide ratio of 50/50 or 75/25 and acid (A) or ester (E) end-capping in N-methyl-2-pyrrolidone at a polymer/solvent ratio of 20/80% (w/w). Mean in vitro drug release in 0.05 M phosphate buffer pH 7.4 with 1% (w/v) sodium lauryl sulphate was 37.3, 47.1, 53.3, and 62.3% within 28 days for ISGs containing PLGA5050A, PDLLA, PLGA7525A, and PLGA7525E, respectively. The data suggested that drug release was primarily controlle…

porosityBedaquilinein vitro releasePharmaceutical SciencedissolutionPolyethylene glycolArticleDiffusionchemistry.chemical_compoundSubcutaneous injectionPharmacy and materia medicaPharmacokineticsIn vivoPharmacokineticsin situ forming gelsSolubilitybedaquilinesustained releaseinjectableLactidepolymer erosionPharmacology. TherapydiffusionIn vitro releasePolymer erosionRS1-441PLGAInjectablechemistryIn situ forming gelsBedaquilinePorositypharmacokineticsDissolutionNuclear chemistrySustained releasePharmaceutics
researchProduct